EconPapers    
Economics at your fingertips  
 

A Numerical Approach for Evaluating the Time-Dependent Distribution of a Quasi Birth-Death Process

Michel Mandjes and Birgit Sollie ()
Additional contact information
Michel Mandjes: University of Amsterdam
Birgit Sollie: Vrije Universiteit Amsterdam

Methodology and Computing in Applied Probability, 2022, vol. 24, issue 3, 1693-1715

Abstract: Abstract This paper considers a continuous-time quasi birth-death (qbd) process, which informally can be seen as a birth-death process of which the parameters are modulated by an external continuous-time Markov chain. The aim is to numerically approximate the time-dependent distribution of the resulting bivariate Markov process in an accurate and efficient way. An approach based on the Erlangization principle is proposed and formally justified. Its performance is investigated and compared with two existing approaches: one based on numerical evaluation of the matrix exponential underlying the qbd process, and one based on the uniformization technique. It is shown that in many settings the approach based on Erlangization is faster than the other approaches, while still being highly accurate. In the last part of the paper, we demonstrate the use of the developed technique in the context of the evaluation of the likelihood pertaining to a time series, which can then be optimized over its parameters to obtain the maximum likelihood estimator. More specifically, through a series of examples with simulated and real-life data, we show how it can be deployed in model selection problems that involve the choice between a qbd and its non-modulated counterpart.

Keywords: Quasi birth-death processes; Time-dependent probabilities; Erlang distribution; Maximum likelihood estimation; 60J22; 92D25; 62Fxx (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-021-09882-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09882-6

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-021-09882-6

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09882-6