EconPapers    
Economics at your fingertips  
 

Variance Bounding of Delayed-Acceptance Kernels

Chris Sherlock () and Anthony Lee
Additional contact information
Chris Sherlock: Lancaster University
Anthony Lee: University of Bristol

Methodology and Computing in Applied Probability, 2022, vol. 24, issue 3, 2237-2260

Abstract: Abstract A delayed-acceptance version of a Metropolis–Hastings algorithm can be useful for Bayesian inference when it is computationally expensive to calculate the true posterior, but a computationally cheap approximation is available; the delayed-acceptance kernel targets the same posterior as its associated “parent” Metropolis-Hastings kernel. Although the asymptotic variance of the ergodic average of any functional of the delayed-acceptance chain cannot be less than that obtained using its parent, the average computational time per iteration can be much smaller and so for a given computational budget the delayed-acceptance kernel can be more efficient. When the asymptotic variance of the ergodic averages of all $$L^2$$ L 2 functionals of the chain are finite, the kernel is said to be variance bounding. It has recently been noted that a delayed-acceptance kernel need not be variance bounding even when its parent is. We provide sufficient conditions for inheritance: for non-local algorithms, such as the independence sampler, the discrepancy between the log density of the approximation and that of the truth should be bounded; for local algorithms, two alternative sets of conditions are provided. As a by-product of our initial, general result we also supply sufficient conditions on any pair of proposals such that, for any shared target distribution, if a Metropolis-Hastings kernel using one of the proposals is variance bounding then so is the Metropolis-Hastings kernel using the other proposal.

Keywords: Metropolis-Hastings; Delayed-acceptance; Variance bounding; Conductance; 60J10; 65C40; 47A10 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-021-09914-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09914-1

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-021-09914-1

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09914-1