Analytical Computation of Pseudo-Gibbs Distributions for Dependency Networks
Kun-Lin Kuo () and
Yuchung J. Wang ()
Additional contact information
Kun-Lin Kuo: National University of Kaohsiung
Yuchung J. Wang: Rutgers University
Methodology and Computing in Applied Probability, 2023, vol. 25, issue 1, 1-17
Abstract:
Abstract Dependency network (DN) aims at using a collection of conditional distributions to identify a joint pdf. When the DN is compatible (self-consistent), the Gibbs sampler (GS) has been the algorithm to approximate the joint pdf. Without compatibility, GS will have multiple stationary distributions, named pseudo-Gibbs distributions (PGD), associated with different updating orders. To increase the computational efficiency and stability, we propose computing the marginal distributions. Closed-form marginal transition matrix is unearthed from DN. Thus, it becomes possible to compute the marginal distribution of PGD, which will be paired with a conditional distribution to obtain a PGD. We also show that multiple PGDs can be derived from one PGD. When the support is a union of disjoint regions, GS could not converge because the stationary pdf is a mixture of several joint distributions. Examples here show that our approach can obtain correct PGDs even for partitioned support. A new way to verify compatibility, under such circumstances, will also be proposed.
Keywords: Compatibility check; Non-standard dependency network; Ordered pseudo-Gibbs sampling; Reducible Markov chain; Stationary distribution; Structure zero; 65C60; 68T05 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-023-10016-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-10016-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-023-10016-3
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().