Optimal Strategies in a Production Inventory Control Model
Pablo Azcue (),
Esther Frostig () and
Nora Muler ()
Additional contact information
Pablo Azcue: Universidad Torcuato Di Tella
Esther Frostig: Institute of Technology
Nora Muler: Universidad Torcuato Di Tella
Methodology and Computing in Applied Probability, 2023, vol. 25, issue 1, 1-43
Abstract:
Abstract We consider a production-inventory control model with finite capacity and two different production rates, assuming that the cumulative process of customer demand is given by a compound Poisson process. It is possible at any time to switch over from the different production rates but it is mandatory to switch-off when the inventory process reaches the storage maximum capacity. We consider holding, production, shortage penalty and switching costs. This model was introduced by Doshi, Van Der Duyn Schouten and Talman in 1978. In their paper they found a formula for the long-run average expected cost per unit time as a function of two critical levels, in this paper we consider expected discounted cumulative costs instead. We seek to minimize this discounted cost over all admissible switching strategies. We show that the optimal cost functions for the different production rates satisfy the corresponding Hamilton-Jacobi-Bellman system of equations in a viscosity sense and prove a verification theorem. The way in which the optimal cost functions solve the different variational inequalities gives the switching regions of the optimal strategy, hence it is stationary in the sense that depends only on the current production rate and inventory level. We define the notion of finite band strategies and derive, using scale functions, the formulas for the different costs of the band strategies with one or two bands. We also show that there are examples where the switching strategy with two critical levels is not optimal.
Keywords: Inventory/Production model; Optimal switching strategies; Compound Poisson process; Scale functions; Hamilton-Jacobi-Bellman equations; Viscosity solutions; 49L20; 49L25; 90B05; 90B30 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-023-10024-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-10024-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-023-10024-3
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().