EconPapers    
Economics at your fingertips  
 

On Computing the Multivariate Poisson Probability Distribution

Bora Çekyay (), J.B.G. Frenk () and Sonya Javadi ()
Additional contact information
Bora Çekyay: Yildiz Technical University
J.B.G. Frenk: Sabancı University
Sonya Javadi: Işık University

Methodology and Computing in Applied Probability, 2023, vol. 25, issue 3, 1-22

Abstract: Abstract Within the theory of non-negative integer valued multivariate infinitely divisible distributions, the multivariate Poisson distribution plays a key role. As in the univariate case, any non-negative integer valued infinitely divisible multivariate distribution can be approximated by a multivariate distribution belonging to the compound Poisson family. The multivariate Poisson distribution is an important member of this family. In recent years, the multivariate Poisson distributions also has gained practical importance, since they serve as models to describe counting data having a positive covariance structure. However, due to the computational complexity of computing the multivariate Poisson probability mass function (pmf) and its corresponding cumulative distribution function (cdf), their use within these counting models is limited. Since most of the theoretical properties of the multivariate Poisson probability distribution seem already to be known, the main focus of this paper is on proposing more efficient algorithms to compute this pmf. Using a well known property of a Poisson multivariate distributed random vector, we propose in this paper a direct approach to calculate this pmf based on finding all solutions of a system of linear Diophantine equations. This new approach complements an already existing procedure depending on the use of recurrence relations existing for the pmf. We compare our new approach with this already existing approach applied to a slightly different set of recurrence relations which are easier to evaluate. A proof of this new set of recurrence relations is also given. As a result, several algorithms are proposed where some of them are based on the new approach and some use the recurrence relations. To test these algorithms, we provide an extensive analysis in the computational section. Based on the experiments in this section, we conclude that the approach finding all solutions of a set of linear Diophantine equations is computationally more efficient than the approach using the recurrence relations to evaluate the pmf of a multivariate Poisson distributed random vector.

Keywords: Multivariate Poisson distribution; Computational procedures; Diophantine equation; Recurrence relation; 62-08; 62E15; 62E10 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-023-10036-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:25:y:2023:i:3:d:10.1007_s11009-023-10036-z

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-023-10036-z

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:25:y:2023:i:3:d:10.1007_s11009-023-10036-z