Optimal Operating Policy for an M/G/1 Exhaustive Server-Vacation Model
R. E. Lillo ()
Additional contact information
R. E. Lillo: Universidad Carlos III de Madrid
Methodology and Computing in Applied Probability, 2000, vol. 2, issue 2, 153-167
Abstract:
Abstract We consider an M/G/1 queueing system controlled by an exhaustive server–vacation policy, i.e, the server is turned off whenever the system becomes empty and it is turned on after a random time with at least a customer present in the system. In this paper, it is proved that there exists an exhaustive optimal policy which is of the form X + a(T - X)+, where, starting with the server off, X represents the time for the first arrival and T and a are non-negative real numbers. Using a classical average cost structure, the optimization problem is treated under the asymptotic average criterion. A structured definition of exhaustive policy is also derived.
Keywords: control of queues; optimal policy; exhaustive policy; vacation model (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1010046006253 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:2:y:2000:i:2:d:10.1023_a:1010046006253
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1023/A:1010046006253
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().