Bounds on Gambler's Ruin Probabilities in Terms of Moments
S. N. Ethier () and
Davar Khoshnevisan ()
Additional contact information
S. N. Ethier: University of Utah
Davar Khoshnevisan: University of Utah
Methodology and Computing in Applied Probability, 2002, vol. 4, issue 1, 55-68
Abstract:
Abstract Consider a wager that is more complicated than simply winning or losing the amount of the bet. For example, a pass line bet with double odds is such a wager, as is a bet on video poker using a specified drawing strategy. We are concerned with the probability that, in an independent sequence of identical wagers of this type, the gambler loses L or more betting units (i.e., the gambler is “ruined”) before he wins W or more betting units. Using an idea of Markov, Feller established upper and lower bounds on the probability of ruin, bounds that are often very close to each other. However, his formulation depends on finding a positive nontrivial root of the equation φ (ρ )=1, where φ is the probability generating function for the wager in question. Here we give simpler bounds, which rely on the first few moments of the specified wager, thereby making such gambler's ruin probabilities more easily computable.
Keywords: random walk; optional stopping; gambling; craps; video poker (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1023/A:1015705430513 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:4:y:2002:i:1:d:10.1023_a:1015705430513
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1023/A:1015705430513
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().