Central Regions and Dependency
Karl Mosler
Methodology and Computing in Applied Probability, 2003, vol. 5, issue 1, 5-21
Abstract:
Abstract The paper introduces an approach to the ordering of dependence which is based on central regions. A d-variate probability distribution is described by a nested family of sets, called central regions. Those regions are affine equivariant, compact and starshaped and concentrate about a properly defined center. They can be seen as level sets of a depth function. Special cases are Mahalanobis, zonoid, and likelihood regions. A d-variate distribution is called more dependent than another one if the volume of each central region is smaller with the first distribution. This dependence order is characterized by an inequality between determinants of certain parameter matrices if either (i) F and G are arbitrary distributions and the central regions are Mahalanobis or (ii) F and G belong to an elliptical family of distributions and the central regions are arbitrary. If the regions are zonoid regions, the dependence order implies the ordering of lift zonoid volumes. Alternatively, the dependence order is applied to the copulae of the given distributions. Generalized correlation indices are proposed which are increasing with the dependence orders.
Keywords: dependence order; generalized correlation; lift zonoid volume; data depth; trimmed regions (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1023/A:1024144420002 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:5:y:2003:i:1:d:10.1023_a:1024144420002
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1023/A:1024144420002
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().