EconPapers    
Economics at your fingertips  
 

Empirical Polygon Simulation and Central Limit Theorems for the Homogenous Poisson Line Process

Julien Michel () and Katy Paroux ()
Additional contact information
Julien Michel: Unité de Mathématiques Pures et Appliquées
Katy Paroux: UMR 6623-Université de Franche-Comté

Methodology and Computing in Applied Probability, 2007, vol. 9, issue 4, 541-556

Abstract: Abstract For the Poisson line process the empirical polygon is defined thanks to ergodicity and laws of large numbers for some characteristics, such as the number of edges, the perimeter, the area, etc... One also has, still thanks to the ergodicity of the Poisson line process, a canonical relation between this empirical polygon and the polygon containing a given point. The aim of this paper is to provide numerical simulations for both methods: in a previous paper (Paroux, Advances in Applied Probability, 30:640–656, 1998) one of the authors proved central limit theorems for some geometrical quantities associated with this empirical Poisson polygon, we provide numerical simulations for this phenomenon which generates billions of polygons at a small computational cost. We also give another direct simulation of the polygon containing the origin, which enables us to give further values for empirical moments of some geometrical quantities than the ones that were known or computed in the litterature.

Keywords: Poisson line process; central limit theorem; simulation; Primary 60D05; Secondary 60F05; 60G55; 62G30; 65C50 (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-006-9009-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:9:y:2007:i:4:d:10.1007_s11009-006-9009-z

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-006-9009-z

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:9:y:2007:i:4:d:10.1007_s11009-006-9009-z