EconPapers    
Economics at your fingertips  
 

A Bayesian approach for sensitivity analysis of incomplete multivariate longitudinal data with potential nonrandom dropout

Samaneh Mahabadi () and Mojtaba Ganjali ()

METRON, 2015, vol. 73, issue 3, 397-417

Abstract: Experiments involving repeated observations of multivariate outcomes are common in biomedical and public health researches which lead to multivariate longitudinal data. These kinds of data have a unique property in the sense that they allow the researcher to study the joint evolution of the multiple outcomes over the time. Recently, there has been a considerable amount of interest on using Bayesian modelling of longitudinal data, data which commonly suffer from incomplete observations. Those Bayesian models for longitudinal data that rely on the ignorability assumption of the dropout mechanism might give misleading inferences. Hence, there is a need to further study the impact of departures from the ignorability assumption on the Bayesian estimates of the model parameters. Current methodology for Bayesian sensitivity analysis mostly involves single response variable in both cross-sectional and longitudinal studies. In this paper, we propose a multivariate extension of the Bayesian index of sensitivity to non-ignorability for the general case of multivariate longitudinal studies with the possibility of having mixed correlated outcomes and a vector of multiple non-ignorability parameters in the missing mechanism. To simultaneously model the mixed responses over the time, we use a random effect latent variable approach. We illustrate the method conducting some simulation studies and analyzing a real data set from a longitudinal study for the comparison of two oral treatments for toenail dermatophyte onychomycosis. Copyright Sapienza Università di Roma 2015

Keywords: Bayesian sensitivity analysis; Latent variables; Discrete and continuous responses; Dropout; Longitudinal study (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s40300-015-0063-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metron:v:73:y:2015:i:3:p:397-417

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/40300

DOI: 10.1007/s40300-015-0063-6

Access Statistics for this article

METRON is currently edited by Marco Alfo'

More articles in METRON from Springer, Sapienza Università di Roma
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metron:v:73:y:2015:i:3:p:397-417