A note on predictive densities based on composite likelihood methods
Paolo Vidoni ()
Additional contact information
Paolo Vidoni: University of Udine
METRON, 2018, vol. 76, issue 1, No 2, 48 pages
Abstract:
Abstract Whenever the computation of data distribution is unfeasible or inconvenient, the classical predictive procedures prove not to be useful. These rely, after all, on the conditional distribution of the future random variable, which is also unavailable. This paper considers a notion of composite likelihood for specifying composite predictive distributions, viewed as surrogates for true unknown predictive distribution. In particular, the focus is on the pairwise likelihood obtained as a weighted product of likelihood factors related to bivariate events associated with both the sample data and future observation. The specification of the weights, and more generally the evaluation of the frequentist properties of alternative pairwise predictive distributions, is performed by considering the mean square prediction error of the associated predictors and the expected Kullback–Liebler loss of the related predictive densities. Finally, simple examples concerning autoregressive models are presented.
Keywords: Kullback–Leibler divergence; Logarithmic prediction pool; Pairwise likelihood; Predictive distribution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s40300-017-0118-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metron:v:76:y:2018:i:1:d:10.1007_s40300-017-0118-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/40300
DOI: 10.1007/s40300-017-0118-y
Access Statistics for this article
METRON is currently edited by Marco Alfo'
More articles in METRON from Springer, Sapienza Università di Roma
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().