A continuous-time hidden Markov model for cancer surveillance using serum biomarkers with application to hepatocellular carcinoma
Ruben Amoros (),
Ruth King,
Hidenori Toyoda,
Takashi Kumada,
Philip J. Johnson and
Thomas G. Bird
Additional contact information
Ruben Amoros: University of Edinburgh
Ruth King: University of Edinburgh
Hidenori Toyoda: Ogaki Municipal Hospital
Takashi Kumada: Ogaki Municipal Hospital
Philip J. Johnson: University of Liverpool
Thomas G. Bird: Cancer Research UK Beatson Institute
METRON, 2019, vol. 77, issue 2, No 2, 67-86
Abstract:
Abstract Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer deaths worldwide, and its early detection is a critical determinant of whether curative treatment is achievable. Early stage HCC is typically asymptomatic. Thus, screening programmes are used for cancer detection in patients at risk of tumour development. Radiological screening methods are limited by imperfect data, cost and associated risks, and additionally are unable to detect lesions until they have grown to a certain size. Therefore, some screening programmes use additional blood/serum biomarkers to help identify individuals in whom to target diagnostic cancer investigations. The GALAD score, combining the levels of several blood biomarkers, age and sex, has been developed to identify patients with early HCC. Here we propose a Bayesian hierarchical model for an individual’s longitudinal GALAD scores whilst in HCC surveillance to identify potentially significant changes in the trend of the GALAD score, indicating the development of HCC, aiming to improve early detection compared to standard methods. An absorbent two-state continuous-time hidden Markov model is developed for the individual level longitudinal data where the states correspond to the presence/absence of HCC. The model is additionally informed by the information on the diagnosis by standard clinical practice, taking into account that HCC can be present before the actual diagnosis so that there may be false negatives within the diagnosis data. We fit the model to a Japanese cohort of patients undergoing HCC surveillance and show that the detection capability of this proposal is greater than using a fixed cut-point.
Keywords: Hidden Markov chains; Hepatocellular carcinoma; Disease detection; Change-point models (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s40300-019-00151-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metron:v:77:y:2019:i:2:d:10.1007_s40300-019-00151-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/40300
DOI: 10.1007/s40300-019-00151-8
Access Statistics for this article
METRON is currently edited by Marco Alfo'
More articles in METRON from Springer, Sapienza Università di Roma
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().