Flexible regression models for counts with high-inflation of zeros
Jussiane Nader Gonçalves () and
Wagner Barreto-Souza ()
Additional contact information
Jussiane Nader Gonçalves: Universidade Federal de Minas Gerais
Wagner Barreto-Souza: Universidade Federal de Minas Gerais
METRON, 2020, vol. 78, issue 1, No 8, 95 pages
Abstract:
Abstract In this paper, we introduce a flexible class of regression models for counts with high-inflation of zeros that cannot be predicted by the Poisson, the zero-inflated Poisson, the negative binomial and the Poisson-inverse Gaussian regression models. Our proposed flexible regression models are based on a class of zero-inflated mixed Poisson distributions and contain the zero-inflated negative binomial (ZINB) and the zero-inflated Poisson-inverse Gaussian (ZIPIG) distributions, as particular cases, among others. We consider regression structures for the mean, the dispersion, and the zero-inflation parameters. Consequently, we generalize existing models, such as the ZINB regression (with non-varying dispersion), and also open the possibility of introducing new models, such as the ZIPIG and the zero-inflated generalized hyperbolic secant regressions. We propose an Expectation-Maximization (in short EM) algorithm for estimating the parameters and the associated information matrix. Simulation results are presented to compare the finite-sample performance of our proposed EM-algorithm with a direct maximization of the log-likelihood function based on the GAMLSS approach. These simulated results show some advantages of our EM-algorithm concerning the GAMLSS proposal. We also discuss a measure of influence based on the EM approach and propose simulated envelopes for checking the adequacy of our zero-inflated regression models. An empirical application, about the number of roots produced by 270 micropropagated shoots of the columnar apple cultivar Trajan, illustrates the usefulness of the proposed class of regression models for dealing with count data presenting high-inflation of zeros and shows that one cannot use the GAMLSS approach in some practical situations due to numerical problems.
Keywords: EM-algorithm; Overdispersion; Sampling zeros; Structural zeros; Zero-inflated mixed Poisson models (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s40300-020-00163-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metron:v:78:y:2020:i:1:d:10.1007_s40300-020-00163-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/40300
DOI: 10.1007/s40300-020-00163-9
Access Statistics for this article
METRON is currently edited by Marco Alfo'
More articles in METRON from Springer, Sapienza Università di Roma
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().