EconPapers    
Economics at your fingertips  
 

Plateau proposal distributions for adaptive component-wise multiple-try metropolis

F. Din-Houn Lau () and Sebastian Krumscheid ()
Additional contact information
Sebastian Krumscheid: RWTH Aachen University

METRON, 2022, vol. 80, issue 3, No 4, 343-370

Abstract: Abstract Markov chain Monte Carlo (MCMC) methods are sampling methods that have become a commonly used tool in statistics, for example to perform Monte Carlo integration. As a consequence of the increase in computational power, many variations of MCMC methods exist for generating samples from arbitrary, possibly complex, target distributions. The performance of an MCMC method, in particular that of a Metropolis–Hastings MCMC method, is predominately governed by the choice of the so-called proposal distribution used. In this paper, we introduce a new type of proposal distribution for the use in Metropolis–Hastings MCMC methods that operates component-wise and with multiple trials per iteration. Specifically, the novel class of proposal distributions, called Plateau distributions, does not overlap, thus ensuring that the multiple trials are drawn from different regions of the state space. Furthermore, the Plateau proposal distributions allow for a bespoke adaptation procedure that lends itself to a Markov chain with efficient problem dependent state space exploration and favourable burn-in properties. Simulation studies show that our novel MCMC algorithm outperforms competitors when sampling from distributions with a complex shape, highly correlated components or multiple modes.

Keywords: Component-wise Metropolis–Hastings; Multiple-try Metropolis; Adaptive Markov chain Monte Carlo; Plateau proposal distribution (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s40300-022-00235-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metron:v:80:y:2022:i:3:d:10.1007_s40300-022-00235-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/40300

DOI: 10.1007/s40300-022-00235-y

Access Statistics for this article

METRON is currently edited by Marco Alfo'

More articles in METRON from Springer, Sapienza Università di Roma
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metron:v:80:y:2022:i:3:d:10.1007_s40300-022-00235-y