Potential copper production through 2035 in Chile
Gustavo Lagos (),
David Peters (),
Marcos Lima () and
José Joaquín Jara ()
Additional contact information
Gustavo Lagos: Pontificia Universidad Católica de Chile
David Peters: Pontificia Universidad Católica de Chile
Marcos Lima: Pontificia Universidad Católica de Chile
José Joaquín Jara: Pontificia Universidad Católica de Chile
Mineral Economics, 2020, vol. 33, issue 1, No 8, 43-56
Abstract:
Abstract In the long term, primary and secondary supply of refined copper satisfies demand. Numerous models exist to explain and predict demand and secondary supply; however, the projection of primary supply relies mostly on detailed knowledge of potential mining projects and on existing ore reserves and resources. Much discussion has occurred historically regarding the availability of resources and reserves for the future. Chile, being the largest copper producer, also has the largest reserves in the world; therefore, it retains its potential to be a key player in future supply. This article explores some of the most relevant resource and technological challenges that may emerge with an accelerated development of brownfield and greenfield copper mining projects in Chile through 2035, without considering economic, regulatory, and environmental constraints. A “Full Scenario” was created to accommodate these conditions and restrictions. It includes estimates of future ore reserves, copper production, plant capacity, ore grades, energy and water consumption, greenhouse gas (GHG) emissions, and generation of tailings. Maximum production would exceed 10 million tons of contained copper from 2027 to 2030, with a resulting decrease of ore grades and the growth of energy and water consumption. The growth of indirect GHG emissions through 2035 is estimated at 18.4% less than copper production growth, because all new electric energy for this scenario would be based on renewable energy. Also, all new water used by 38 out of the 42 mining projects considered would be seawater, and some of the continental water used in 2019 would cease to be used in mining.
Keywords: Copper production; Chile; Scenario 2035; Energy; Water; GHG (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13563-020-00227-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:minecn:v:33:y:2020:i:1:d:10.1007_s13563-020-00227-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/13563
DOI: 10.1007/s13563-020-00227-2
Access Statistics for this article
Mineral Economics is currently edited by Magnus Ericsson and Patrik Söderholm
More articles in Mineral Economics from Springer, Raw Materials Group (RMG), Luleå University of Technology
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().