EconPapers    
Economics at your fingertips  
 

Information-driven network analysis: evolving the “complex networks” paradigm

Remo Pareschi () and Francesca Arcelli Fontana ()
Additional contact information
Remo Pareschi: University of Molise
Francesca Arcelli Fontana: University of Milano-Bicocca

Mind & Society: Cognitive Studies in Economics and Social Sciences, 2016, vol. 15, issue 2, No 2, 155-167

Abstract: Abstract Network analysis views complex systems as networks with well-defined structural properties that account for their complexity. These characteristics, which include scale-free behavior, small worlds and communities, are not to be found in networks such as random graphs and lattices that do not correspond to complex systems. They provide therefore a robust ground for claiming the existence of “complex networks” as a non-trivial subset of networks. The theory of complex networks has thus been successful in making systematically explicit relevant marks of complexity in the form of structural properties, and this success is at the root of its current popularity. Much less systematic has been, on the other hand, the definition of the properties of the building components of complex networks. The obvious assumption is that these components must be nodes and links. Generally, however, the internal structure of nodes is not taken into account, and links are serendipitously identified by the perspective with which one looks at the network to be analyzed. For instance, if the nodes are Web pages that contain information about scientific papers, one point of view will match the relevant links with hyperlinks to similar Web pages, and another with citations of other articles. We intend to contribute here a systematic approach to the identification of the components of a complex network that is based on information theory. The approach hinges on some recent results arising from the convergence between the theory of complex networks and probabilistic techniques for content mining. At its core there is the idea that nodes in a complex network correspond to basic information units from which links are extracted via methods of machine learning. Hence the links themselves are viewed as emergent properties, similarly to the broader structural properties mentioned above. Indeed, beside rounding up the theory, this approach based on learning has clear practical benefits, in that it makes networks emerge from arbitrary information domains. We provide examples and applications in a variety of contexts, starting from an information-theoretic reconstruction of the well-known distinction between “strong links” and “weak links” and then delving into specific applications such as business process management and analysis of policy making.

Keywords: Complex systems; Complex networks; Information theory; Probabilistic topic models; Business process management; Policy analysis (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11299-015-0172-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:minsoc:v:15:y:2016:i:2:d:10.1007_s11299-015-0172-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11299

DOI: 10.1007/s11299-015-0172-1

Access Statistics for this article

Mind & Society: Cognitive Studies in Economics and Social Sciences is currently edited by Riccardo Viale

More articles in Mind & Society: Cognitive Studies in Economics and Social Sciences from Springer, Fondazione Rosselli Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:minsoc:v:15:y:2016:i:2:d:10.1007_s11299-015-0172-1