EconPapers    
Economics at your fingertips  
 

Comparative assessment of bivariate, multivariate and machine learning models for mapping flood proneness

Alaa M. Al-Abadi () and Noor A. Al-Najar
Additional contact information
Alaa M. Al-Abadi: University of Basrah
Noor A. Al-Najar: University of Basrah

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 100, issue 2, No 1, 491 pages

Abstract: Abstract This study applied two bivariate statistical models (frequency ratio and information value), one multivariate statistical model (logistic regression), and two supervised statistical learning models (boosted regression trees and classification and regression trees) for mapping flood proneness in an arid region of southern Iraq. For this purpose, ten flood causative factors were chosen based on data availability and local conditions along with the spatial extent of the large flood that affected the study area on 13 May 2013. The factors used involved topography-related factors (elevation, slope, curvature, topographic wetness index, and stream power index), lithology, soil, land use/land cover, the average of annual rainfall, and distance to rivers. The multicollinearity test proved that there was no multicollinearity problem among the factors used. Investigating the worth of factors in building the models using information gain ratio showed that the most important factors that play a major role in controlling flood proneness were elevation, followed by annual rainfall average, distance to rivers, land use/land cover, lithology, and soil. The models were employed using the most important factors to get flood proneness maps. The values of flood proneness were categorized into five classes using a quantile classification scheme. For validating the models, area under the receiver operating characteristic curve (AUC) was used. The AUC for prediction data set was 0.793, 0.786, 0.779, 0.754, and 0.753 for classification and regression trees, boosted regression trees, logistic regression, information value, and frequency ratio, respectively. For the best performance model (classification and regression trees), the areas occupied by flood proneness zones were 2735 km2, 2809 km2, 2816 km2, 2732 km2, and 2801 km2, for very low, low, moderate, high, and very high flood proneness zones, respectively. The main conclusion is that the machine learning models are optimal in mapping flood proneness in the study area, followed by the multivariate and bivariate models. Decision makers and hydrologists for improved management of access floodwater and prevention of flood-related damages can adopt the flood proneness maps developed in this study.

Keywords: Machine learning models; Bivariate models; Flood; Iraq (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-019-03821-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:100:y:2020:i:2:d:10.1007_s11069-019-03821-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-019-03821-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:100:y:2020:i:2:d:10.1007_s11069-019-03821-y