Urban flood hazard mapping using a hydraulic–GIS combined model
Boyu Feng (),
Jinfei Wang,
Ying Zhang,
Brent Hall and
Chuiqing Zeng
Additional contact information
Boyu Feng: The University of Western Ontario
Jinfei Wang: The University of Western Ontario
Ying Zhang: Natural Resources Canada
Brent Hall: Esri Canada
Chuiqing Zeng: The University of Western Ontario
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 100, issue 3, No 8, 1089-1104
Abstract:
Abstract Urban flooding is a reoccurring disaster, and its frequency and intensity are likely to increase in the future due to the increasing frequency of storm events. Up-to-date monitoring on the distribution of flood hazards in cities is necessary and valuable for urban planning. This research combines two common urban flooding approaches, namely hydraulic and GIS models, in a case study of London, Ontario, Canada. The hydraulic–GIS combined model employs the hydraulic concept in a simplified GIS frame, hence avoiding heavy computation in the hydraulic model and arbitrary coefficients in a GIS model. We used a binary logistic regression model to integrate the hydraulic concept in a GIS model. The multi-criteria GIS model built by binary logistic regression was able to simulate the results from the hydraulic model with good consistency. Such a strategy serves as a promising prototype for addressing similar geographical modelling issues, where the time-consuming physical model can be potentially replaced by a simplified GIS model. Furthermore, the impervious surface percentage is an important input in the hydraulic model. This research experimented different impervious surface percentages as input to the hydraulic model and found that a spatially variable impervious surface percentage achieves better agreement with hydraulic modelling than that of uniform (25% and 42%) impervious surface percentages.
Keywords: Flood hazard map; Hydraulic model; Multi-criteria; GIS model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-019-03850-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:100:y:2020:i:3:d:10.1007_s11069-019-03850-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-019-03850-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().