Coastal inundation due to tropical cyclones along the east coast of India: an influence of climate change impact
A. D. Rao (),
Puja Upadhaya,
Hyder Ali,
Smita Pandey and
Vidya Warrier
Additional contact information
A. D. Rao: Indian Institute of Technology Delhi
Puja Upadhaya: Indian Institute of Technology Delhi
Hyder Ali: Indian Institute of Technology Delhi
Smita Pandey: Indian Institute of Technology Delhi
Vidya Warrier: Indian Institute of Technology Delhi
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 101, issue 1, No 2, 39-57
Abstract:
Abstract Coastal inundation due to storm tides is computed using ADvanced CIRCulation (ADCIRC) model along the east coast of India. Inland inundation due to storm tides is calculated every 10 km along the coast by using synthetic tracks as described in Rao et al. (Nat Hazards, 2019. https://doi.org/10.1007/s11069-019-03804-z). The cyclonic winds are computed using a maximum pressure drop of the cyclone based on a 100-year return period. The coast is mapped for the maximum possible extent of inland inundation with water levels at the district level. The influence of climate change impact as a result of global warming on the coastal inundation is evaluated by enhancing the intensity of the cyclones. Peak water levels of about 10–12 m are found along the north of Odisha coast. The most vulnerable region in terms of coastal inundation in the present scenario is found in the districts of West Bengal; however, they are the least affected by about 5–6% due to climate change scenario (CCS). The most affected inundated districts by more than 50% due to CCS are observed in the Godavari deltaic region in Andhra Pradesh. Though the water levels in the Ramanathapuram District in Tamil Nadu reach more than 8 m in any scenario, the region is unaffected by the coastal inundation due to high local topography. By examining the inundated area of different water levels, it is revealed that more than 75% of the total area is inundated with greater than 2 m water levels in the northern districts of Odisha and Ramanathapuram District in Tamil Nadu.
Keywords: Coastal inundation; Tropical cyclones; Storm tides; Climate change; Numerical model; Bay of Bengal (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-03861-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:101:y:2020:i:1:d:10.1007_s11069-020-03861-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-03861-9
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().