EconPapers    
Economics at your fingertips  
 

Evaluating flood resilience in rural communities: a case-based assessment of Dyer County, Tennessee

Madeline Allen (), Leslie Gillespie-Marthaler (), Mark Abkowitz () and Janey Camp ()
Additional contact information
Madeline Allen: Vanderbilt University
Leslie Gillespie-Marthaler: Vanderbilt University
Mark Abkowitz: Vanderbilt University
Janey Camp: Vanderbilt University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 101, issue 1, No 8, 173-194

Abstract: Abstract Communities everywhere are being subjected to a variety of natural hazard events that can result in significant disruption to critical functions. As a result, community resilience assessment in these locations is gaining popularity as a means to help better prepare for, respond to, and recover from potentially disruptive events. The objective of this study was to identify key vulnerabilities relevant to addressing rural community resilience through conducting an initial flood impact analysis, with a specific focus on emergency response and transportation network accessibility. It included a use case involving the flooding of a rural community along the US inland waterway system. Special consideration was given to impacts experienced by at-risk populations (e.g., low economic status, youth, and elderly), given their unique vulnerabilities. An important backdrop to this work is recognition that Federal Emergency Management Agency’s Hazus, a free, publicly available tool, is commonly recommended by the agency for counties, particularly those with limited resources (i.e., rural areas), to use in developing their hazard mitigation plans. The case study results, however, demonstrate that Hazus, as currently utilized, has some serious deficiencies in that it: (1) likely underestimates the flood extent boundaries for study regions in a Level 1 analysis (which solely relies upon filling digital elevation models with precipitation), (2) may be incorrectly predicting the number and location of damaged buildings due to its reliance on out-of-date census data and the assumption that buildings are evenly distributed within a census block, and (3) is incomplete in its reporting of the accessibility of socially vulnerable populations and response capabilities of essential facilities. Therefore, if counties base their flood emergency response plans solely on Hazus results, they are likely to be underprepared for future flood events of significant magnitude. An approach in which Hazus results can be augmented with additional data and analyses is proposed to provide a more risk-informed assessment of community-level flood resilience.

Keywords: Flood; Resilience; Hazus; Rural community; Impact assessment; Vulnerable population; Emergency response (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-03868-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:101:y:2020:i:1:d:10.1007_s11069-020-03868-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-03868-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:101:y:2020:i:1:d:10.1007_s11069-020-03868-2