Pseudo-climate modelling study on projected changes in extreme extratropical cyclones, storm waves and surges under CMIP5 multi-model ensemble: Baltic Sea perspective
Martin Mäll (),
Ryota Nakamura,
Ülo Suursaar and
Tomoya Shibayama
Additional contact information
Martin Mäll: Waseda University
Ryota Nakamura: Niigata University
Ülo Suursaar: University of Tartu
Tomoya Shibayama: Waseda University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 102, issue 1, No 4, 67-99
Abstract:
Abstract In order to estimate the possible parameters of future extreme extratropical cyclones (ETCs), a pseudo-climate modelling study of three historical storms originating from the Atlantic Ocean and one from the Black Sea area was performed using multi-model approach considering IPCC emission scenarios RCP4.5 and RCP8.5 for the twenty-first century. Applying Weather Research and Forecasting atmosphere model (WRF), Finite Volume Community Ocean model (FVCOM-SWAVE) and the Simulating WAves Nearshore (SWAN) model, the changes in initial conditions in atmospheric air temperature, sea surface temperature and relative humidity were considered on the basis of 14 CMIP5 general circulation models ensemble. According to the future scenario results, no notable changes are expected in minimum atmospheric pressure within the ETCs of the future; however, the low pressure area was slightly larger and the strong wind zone was extending further south with greater peak wind speeds in the future (year 2081–2100) simulations. This, in turn, yielded a small surge height increase at Pärnu under RCP4.5 scenario; however, under RCP8.5 scenario the surge increase was up to 22–59 cm. Westerly approaching ETCs will bring more precipitation to the Baltic Sea area in the (warmer) future. In case of a southerly cyclone, the results were more mixed. An insignificant increase in wave heights during extreme storm conditions occurred. Although RCP8.5 future scenario is usually considered as unrealistic, the results of this study still suggest that the extreme ETCs may become more dangerous in the future, although probably not as certainly as tropical cyclones.
Keywords: FVCOM-SWAVE; ETC; Cyclone tracks; Sea level; Storm surge; Precipitation; Climate change (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-03911-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:102:y:2020:i:1:d:10.1007_s11069-020-03911-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-03911-2
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().