The role of physical geographic parameters affecting past (1980–2010) and future (2020–2049) thermal stress in Iran
Gholamreza Roshan (),
Stefan W. Grab and
Mohammad Saeed Najafi ()
Additional contact information
Gholamreza Roshan: Golestan University
Stefan W. Grab: University of the Witwatersrand
Mohammad Saeed Najafi: Water Research Institute (WRI)
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 102, issue 1, No 16, 365-399
Abstract:
Abstract In this study, the wet-bulb globe temperature (WBGT) validated biometeorological index is used to monitor and project future human thermal stress in Iran. The meteorological components required to calculate this index include dry and wet temperatures, relative humidity and radiation. To monitor and project thermal stress, data for two time periods are used: (i) baseline data for the period 1980–2010 and (ii) Can-ESM2 model outputs from the CMIP5 model series, which projects values for the period 2020–2049. Four physical geographic factors are used for modeling WBGT frequency; these include station height (elevation), distance from nearest large water body, latitude and longitude. To establish the role of these components on WBGT extreme values, a weighted geographical regression method is used. Findings show that by considering these variables in the form of multivariate weighted regressions, WBGT threshold values are reliably modeled. Based on projected global warming scenarios in coming decades, the threshold of thermal stress occurrence for most regions of Iran shows larger values than those for the reference period. Parameters of latitude, longitude and distance from a large water body will have an incremental impact as contributors to the occurrence of future thermal stress, relative to the reference period. Of these, latitude will have the greatest impact on thermal stress (6.3%), while that for longitude and distance from a large water body will be 2.4% and 1.4%, respectively. However, station elevation will have a reduced impact on thermal stress (by 4.1%).
Keywords: Human biometeorology; Thermal stress; Climate change scenarios; Spatial analysis; Geographic weighted regression; Iran (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-03930-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:102:y:2020:i:1:d:10.1007_s11069-020-03930-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-03930-z
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().