Migration mechanism of fine particles in aquifer during water injection
Mingze Du (),
Bin Gong (),
Yanchun Xu,
Zhao Zhao and
Luoxun Zhang
Additional contact information
Mingze Du: China Coal Research Institute
Bin Gong: Nagasaki University
Yanchun Xu: China University of Mining and Technology
Zhao Zhao: China University of Mining and Technology
Luoxun Zhang: China University of Mining and Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 102, issue 3, No 17, 1095-1116
Abstract:
Abstract Water injection in aquifers to stabilize water level is a novel method to prevent shaft failure. However, with the progression of water injection, the flow rate of water injection decreases gradually. Through analysis, it is considered that the fine particles in sand migrate to form a dense structure, which hinders the increase of water flow. In order to investigate the migration mechanism of fine particles in the aquifer during water injection, experimental tests and numerical simulations were conducted in the present study. First, the physical experiment was designed, and it was shown that the water pressure difference between the two pressure gauges gradually decreased, while the water flow rate per hour slowly decreased. Furthermore, the permeability coefficient of sand near the outlet became smaller and smaller with the migration of fine particles, which indicated that the fine particles among sand grains migrated gradually from the water injection inlet to the outlet. Additionally, the water flow channels formed slowly. Then, the microscopic mechanism of fine particle migration was studied using particle flow code numerical simulation. During water injection, water pressure and porosity of sand decreased from the water injection inlet to the outlet, while the coordination number of particles increased on the whole. Contact force chain gradually strengthened near the outlet side during water injection. The trends of force chain distribution, the coordination number distributions and the evolution of porosity were consistent, which highlighted the process of fine particles migrating from the injection inlet to the outlet in the aquifer.
Keywords: Water injection; Shaft failure; Aquifer; Particle migration; Seepage (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-03947-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03947-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-03947-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().