EconPapers    
Economics at your fingertips  
 

Evaluation of two satellite-based products against ground-based observation for drought analysis in the southern part of Iran

Seyedeh Mahboobeh Jafari (), Mohammad Reza Nikoo (), Maryam Dehghani () and Mohammadali Alijanian ()
Additional contact information
Seyedeh Mahboobeh Jafari: University of Northern British Columbia
Mohammad Reza Nikoo: Shiraz University
Maryam Dehghani: Shiraz University
Mohammadali Alijanian: University of Isfahan

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 102, issue 3, No 25, 1249-1267

Abstract: Abstract Water stress or more specifically drought assessment plays a key role in water management, especially in extreme climate conditions. Basically, globally gridded satellite-based precipitation products are potential sources of data as alternatives for ground-based measurements. However, for a reliable application, they should be evaluated in different regions. In this paper, two satellite-based rainfall products, namely Modern-Era Retrospective Analysis for Research and Applications (MERRA)-Land and Global Land Data Assimilation System-2 (GLDAS-2), have been evaluated against ground-based observations in terms of precipitation and their application for drought analysis. At first, the coarse-resolution MERRA-Land is downscaled to the finer resolution of interest for better comparison. After comparison of these datasets against ground-based observations in terms of precipitation, it is concluded that MERRA-Land can better estimate precipitation. Then, the nonparametric SPIs at various timescales are derived to analyze how well MERRA-Land performs in drought monitoring. Different categorical and statistical error indices are used to assess the efficiency of MERRA-Land in capturing drought events. The results revealed that the downscaled MERRA-Land data can properly detect short-term and mid-term drought events known as agricultural and meteorological droughts throughout the study area, respectively. In addition, drought maps show that the majority of lands experience mid-term scale drought which are in agreement with ground-based observations. The methodology adopted in this study can be applied in areas lacking in rain-gauge stations which significantly extend current capabilities for drought monitoring and early warning systems.

Keywords: Drought; Satellite-based product; Downscaling; MERRA-Land; GLDAS-2; Iran (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-03965-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03965-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-03965-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03965-2