Comparative study on flash flood hazard assessment for Nam Ou River Basin, Lao PDR
Jun Du (),
Zhong-jie Fan and
Jian Pu
Additional contact information
Jun Du: Changjiang River Scientific Research Institute
Zhong-jie Fan: Changjiang River Scientific Research Institute
Jian Pu: Changjiang River Scientific Research Institute
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 102, issue 3, No 32, 1393-1417
Abstract:
Abstract Laos is a mountainous, rainy and less developed country in Southeast Asia. In Laos, floods represent a major constraint on social economic development, causing a large number of casualties and property losses each year, among which the impact from flash floods is also very prominent. Especially in recent decades, with the development of social economy and the intensification of hydropower development, the serious threat from flash floods is becoming more and more obvious. However, there is no fundamental defence system for flash floods been established yet in this country, and the basic knowledge on local flash flood development is also ignored. For filling this gap, taking the Nam Ou River Basin as an example, this paper tries to find out the most helpful hazard assessment method for current Laos based on comparative analysis from the flash flood potential index, the calculation of curve number–rainfall erosivity and the extrapolation method. The results show that the extrapolation method based on spatial lag model constructed by the data from Yunnan, China, presents the most reliable outcome compared with the other two methods, indicating the spatial autocorrelation model can also be useful for extrapolation, effectively. Besides, the scale effect of different potential impact elements on flash flood, i.e. the spatial correlation between each element and the distribution of flash flood events at different spatial statistic units, was also preliminary studied. It is found that the degree of correlation in spatial analysis depends on the short board effect, i.e. only the element that restricts the regional flash flood developmental system can be the key factor. The correlations of most watershed elements increase or decrease directly with the rise of watershed scale, and the values of coefficients tend to be stable at large watershed scales.
Keywords: Flash flood; FFPI; Spatial autocorrelation; Hazard assessment; Scale effect (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-03972-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03972-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-03972-3
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().