Development and validation of a storm surge forecasting/hindcasting modelling system for the extensive Río de la Plata Estuary and its adjacent Continental Shelf
Matías G. Dinápoli (),
Claudia G. Simionato and
Diego Moreira
Additional contact information
Matías G. Dinápoli: Universidad de Buenos Aires
Claudia G. Simionato: Universidad de Buenos Aires
Diego Moreira: Universidad de Buenos Aires
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 103, issue 2, No 30, 2259 pages
Abstract:
Abstract The Río de la Plata (RdP) Estuary is affected by significant surges several times per year. This phenomenon has historically caused catastrophic water-level enlargements of up to 4.44 m, threatening and claiming human lives and producing major economic and material damages. The negative surges are less frequent, but when they do occur, inhibit the access to the principal harbors and waterways and disable the drinking water intakes of the Metropolitan Area of Buenos Aires (the Capital City of Argentina) with a population of more and 16 million people. Recent works suggest that the number and strength of the surge events have been increasing with time. Nevertheless, a state-of-the-art system for the forecast of those events is not available yet. In this work, the implementation of a numerical modelling system for the forecast/hindcast of storm surges and the associated currents in the RdP and the adjacent continental shelf are presented and validated. This pre-operational system is based on an adaptation of the CROCO community ocean model to solve the dynamics associated with the surge. The model was implemented using a set of routines written in open-source programming language (Linux and Python) to be cheap and efficient and to ensure an easy future transfer to the services responsible for the alerts. For a better representation of the regional atmospheric dynamics, wind speed and sea-level pressure used to force the simulations were corrected using direct observations collected at an oceanographic buoy anchored at the estuary. The model system performance in hindcast mode was quantified by comparison with observations from tidal gauges and current meters at several locations of the estuary and the adjacent shelf. Percent errors for water level over the whole estuary and currents in the intermediate and exterior estuary drove to average results of 8 and 13%, respectively. The skill scores resulted, on average, of 0.90 and 0.80, respectively. The model performance in both hindcast and forecast modes was evaluated during historical extreme storm surges. Results support the good performance of the model to simulate even extreme events with average skill scores of 0.97 and 0.92, respectively. Results are encouraging, particularly taking into account the limitations in the atmospheric forcing for the region, where only a relatively small number of direct observations are assimilated by the reanalysis and forecast models.
Keywords: Pre-operational modelling system; Storm surges alert and forecast; Río de la Plata Estuary (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04079-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:103:y:2020:i:2:d:10.1007_s11069-020-04079-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04079-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().