Researching significant earthquakes in Taiwan using two back-propagation neural network models
Jyh-Woei Lin ()
Additional contact information
Jyh-Woei Lin: Nanjing University of Information Science and Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 103, issue 3, No 43, 3563-3590
Abstract:
Abstract This study pertains to the Chi-Chi earthquake of 1999 (a Richter magnitude (ML) of 7.3), the Meishan earthquake of 1906 (a Richter magnitude (ML) of 7.1) and the Hualien earthquakes of 1951 (a Richter magnitude (ML) of 7.3), which were triggered by the Chelungpu, Meishan and Milun faults. Two back-propagation neural networks (BPNNs)—(1) an embedded earthquake Richter magnitude (ML) prediction BPNN model and (2) an active probability BPNN model—are used to predict recurrence times over 500 years. Recurrence times for a 500-year period have been studied previously. This study examines the three earthquakes again and compares the results with those for previous studies. This process does not use any probability model with exceedance probability. The Chelungpu fault and the Tamaopu-Shuangtung fault are shown to more strongly couple. This viewpoint agrees with previous studies, which suggests that the Chi-Chi earthquake was caused by the Chelungpu faults in 1999. Its recurrence time with a Richter magnitude (ML) of more than 7 is 210 years after the Chi-Chi earthquake, and the highest probability is more than 60%. The Meishan earthquake is confirmed to have been caused by the Meishan fault in 1906. There is a high probability of more than 60% of another Meishan earthquake with a Richter magnitude (ML) of more than 7 in 170 years. There is a high probability of more than 60% for the occurrence of an earthquake with a Richter magnitude (ML) of more than 7 in Hualien due to the Milun faults. The results for both BNNN models are more realistic than those of previous studies because only the earthquake catalog is used, so that the cost of study is reduced.
Keywords: Chi-Chi earthquake; Meishan earthquake; Hualien earthquake; Back-propagation neural networks (BPNNs); Embedded earthquake Richter magnitude (ML) prediction BPNN model (EEMPBPNN); Active probability BPNN model (PBNNM); Exceedance probability; Recurrence time; Earthquake catalog (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04144-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04144-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04144-z
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().