Implication of source models on tsunami wave simulations for 2004 (Mw 9.2) Sumatra earthquake
J. Dhanya () and
S. T. G. Raghukanth
Additional contact information
J. Dhanya: Indian Institute of Technology Madras
S. T. G. Raghukanth: Indian Institute of Technology Madras
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 104, issue 1, No 12, 279-304
Abstract:
Abstract This article addresses the effect of the rupture process on tsunami wave simulations by assessing the propagation of uncertainties from source to wave heights. Thirteen slip models available for the 2004 (Mw 9.2) Sumatra earthquake are utilized in the evaluation. First, quasi-static displacement of the ocean floor is estimated using Okada’s solutions. Further, the corresponding displacement time histories provided as an initial condition for tsunami simulations by modeling the region in Clawpack. The simulated results are compared against the four tidal-gauge data available in the east-coast of India and three altimeter recordings from satellites. The comparisons pointed to the sensitivity of simulated wave heights toward the input slip distribution and rupture process. Further, it is noted from the standard deviations estimated between the results of thirteen models that the value reduced from maximum slip (6.53 m) to displacement (2.60 m), which further reduces in the wave height estimates (1.70 m). Hence, this study suggests the need for proper quantification of the uncertainty propagation in tsunami hazard estimations.
Keywords: 2004 Sumatra earthquake; Rupture process; Tsunami wave heights; Uncertainty (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04168-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:104:y:2020:i:1:d:10.1007_s11069-020-04168-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04168-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().