Adjustability of exposed elements by updating their capacity for resistance after a damaging event: application to an earthquake–tsunami cascade scenario
Caterina Negulescu (),
Abed Benaïchouche,
Anne Lemoine,
Sylvestre Roy and
Rodrigo Pedreros
Additional contact information
Caterina Negulescu: BRGM (French Geological Survey)
Abed Benaïchouche: BRGM (French Geological Survey)
Anne Lemoine: BRGM (French Geological Survey)
Sylvestre Roy: BRGM (French Geological Survey)
Rodrigo Pedreros: BRGM (French Geological Survey)
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 104, issue 1, No 32, 753-793
Abstract:
Abstract The 2011 Great East Japan earthquake and tsunami remind us once again that these types of cascade event can occur and cause considerable damage. The scientific community realizes the need for rapid theoretical and practical progress on cascade events to provide field teams with the necessary tools and information for action during these types of events. The earthquake damage scenario for Martinique and Guadeloupe islands (French West Indies) has already been performed within the framework of French governmental projects, but these areas, in the vicinity of the French West Indies subduction zone, are also subject to tsunami events. In this study, we propose to perform a combined scenario in which an earthquake is followed by a tsunami, as it could arrive one day, considering the seismic characteristics and potential of such a subduction zone. The vulnerability of the buildings is defined considering local specific information based on several years of field inventories and inspections and is later classified into one of the 36 model building types of HAZUS. The calculation of the damages due to tsunamis follows the HAZUS methodologies. The main novelty of our study is the calculation of damage due to the two phenomena occurring one after the other, not in parallel, as is calculated in the existing literature. Therefore, for the calculation of the damages due to the second event (i.e. the tsunami), the vulnerability characteristics of the initial structure are reduced, considering the damage state of the construction after the first event (i.e. the earthquake). Hence, in our case, this calculation approach allows us to update the number of exposed elements and their changed vulnerabilities considering the damages due to the earthquake, since certain structures are already damaged by the earthquake before the arrival of the tsunami wave. The results coming from our study and our manner of treating the cascading hazards are putting into perspective with the Hazus method for combining damages coming from earthquake and the damages coming from consequently tsunami. The results expressed as the sum of the damages in both most damaged states, Extensive and Complete, are more or less in the same range of values for both studies (our study and HAZUS 2017). However, a trend of having more percentage of complete damages (and hence, less the Extensive damages) with our method than the ones obtained with the Hazus combination can be important information for crisis managing. This is a first result for the French West Indies territory, but anyway, more studies should be carried out in order to check this trend and eventually to confirm and validate this issue for others territories with others bathymetries, vulnerabilities and seismological features.
Keywords: Tsunami flooding; Vulnerability adjustability; Cascading events; Combined earthquake–tsunami phenomenon; French West Indies (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04189-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:104:y:2020:i:1:d:10.1007_s11069-020-04189-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04189-0
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().