EconPapers    
Economics at your fingertips  
 

Debris-flow Indicator for an early warning system in the Aosta valley region

Michel Ponziani (), Paolo Pogliotti (), Hervé Stevenin and Sara Maria Ratto
Additional contact information
Michel Ponziani: Functional Centre of Aosta Valley, Department of Civil Protection
Paolo Pogliotti: ARPA Valle d’Aosta
Hervé Stevenin: Functional Centre of Aosta Valley, Department of Civil Protection
Sara Maria Ratto: Functional Centre of Aosta Valley, Department of Civil Protection

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 104, issue 2, No 33, 1819-1839

Abstract: Abstract Aosta Valley, an Alpine region in north-western Italy, has an early warning system (EWS) that issues hydrogeological alerts based on hydrological modelling and rainfall thresholds that identify the possibility of shallow landslides being triggered in different areas of the region. The high headwater catchments are characterized by the presence of permafrost and glacial sediments, and they are frequently prone to debris flows. The summer debris flows are initiated by short-duration, high-intensity rainstorms, which are associated with high meteorological uncertainty; therefore, they are not always detected by the early warning system of shallow landslides. In this study, the hydro-meteorological and permafrost conditions related to the debris-flow events from 2013 to 2018 are investigated in order to determine the variables affecting the triggering of debris flows. Debris-Flow Indicator (DFI), an early warning system specific for debris flows, was developed using recorded air temperatures, thunderstorm alerts and forecast rainfall. Two alert levels of the DFI were defined by two thresholds (S1 and S2) of the freezing level determined from performance metrics. The performance of the DFI was then studied with a back-analysis from 2013 to 2019, using observed air temperatures and forecast rainfalls. This analysis showed that the experimental implementation of the DFI in the EWS of the Aosta Valley region resulted in detecting most of the events with some false alerts (for the lower threshold, S1) or detecting only major events, but without generating false alerts (for the higher threshold, S2). Consequently, the DFI can be applied for issuing debris-flow alerts for large areas in mountain regions based only on meteorological data and forecast.

Keywords: Early warning system; Alert system; Debris-flow detection; Weather forecast; Alpine region (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04249-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:104:y:2020:i:2:d:10.1007_s11069-020-04249-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04249-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:104:y:2020:i:2:d:10.1007_s11069-020-04249-5