EconPapers    
Economics at your fingertips  
 

Long-term flood risk assessment of watersheds under climate change based on the game cross-efficiency DEA

Qingmu Su ()
Additional contact information
Qingmu Su: National Cheng Kung University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 104, issue 3, No 13, 2213-2237

Abstract: Abstract Climate change has significantly increased extreme precipitation and altered regional hydrological cycle, aggravating flood in the watershed. The effective measurement of the risk brought by climate change is an effective way to cope with flood hazard in the future. At the same time, the quality of the simulation of climate change scenarios will also affect the accuracy of flood risk assessment. Therefore, a comprehensive method is needed to measure the long-term disaster risk. However, the current method of subjectively assigning indicator weights is still subjective and difficult to be promoted and applied. So a new model for assessing watershed risk is constructed in this study. Based on the game cross-efficiency data envelopment analysis method and the combination of simulations of climate scenarios, the model can determine the input factors of the assessment and the influencing level of the input factors by using the Principal Component Analysis and Tobit model. The model comprehensively evaluates the flood risk level in the watershed with the results of the simulation of hazard in different climate scenarios, hazard exposure and social vulnerability as input factors, and the degree of disaster loss as the output factor. Results: (1) the hazard, exposure, and social vulnerability are spatially mismatched; (2) the overall risk in the watershed presents such a pattern: upstream (0.751) > downstream (0.418) > midstream (0.362); (3) the long-term flood hazard may be reduced under the influence of climate change. The research is helpful to formulate long-term flood mitigation strategies in the future.

Keywords: Climate scenario simulation; Flood disaster; Risk assessment; Data envelopment analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04269-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04269-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04269-1

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04269-1