EconPapers    
Economics at your fingertips  
 

Spatiotemporal characteristics of extreme droughts and their association with sea surface temperature over the Cauvery River basin, India

Pravat Jena, K. S. Kasiviswanathan and Sarita Azad ()
Additional contact information
Pravat Jena: Indian Institute of Technology Mandi
K. S. Kasiviswanathan: Indian Institute of Technology Roorkee
Sarita Azad: Indian Institute of Technology Mandi

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 104, issue 3, No 14, 2239-2259

Abstract: Abstract Drought is a function of time as well as climate variables such as temperature and precipitation. The process of drought forming is slow, and it manifests at different time scales, which adversely affects the economy of a country. The identification and characterization of droughts at various spatiotemporal scales are of great importance. It helps in the planning and management of water resources, policymaking, and agribusiness industries. In the present paper, the Cauvery River basin is chosen as a study area to analyze the changes in the frequency distribution of extreme droughts and duration, with the combined effect of evapotranspiration and rainfall. The drought indices such as Standard Precipitation Index (SPI) and Standard Precipitation Evapotranspiration Index (SPEI) are implemented on monthly rainfall data and potential evapotranspiration of resolution 0.25° × 0.25° long./lat. for the period 1931–2010. The results reveal that the frequency of the extreme droughts over the basin has significantly increased over the post-era of global warming. The increased rate of extreme droughts is particularly evident in downstream of the basin, mainly due to the increase in temperature and deficit rainfall. Further, the implementation of continuous wavelet transform reveals that SPI at 3-(SPI-3) and 12-(SPI-12) month scale are associated with extended reconstruction of sea surface temperature (ERSST) in anti-phase and in-phase, respectively. It is concluded that the in-phase association of SPI-12 and ERSST enhances the drought situation compared to the anti-phase link of SPI-3 and ERSST.

Keywords: SPI; SPEI; River basin; Wavelet; TBO; Drought intensity; Extreme drought (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04270-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04270-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04270-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04270-8