Addressing uncertainty in extreme rainfall intensity for semi-arid urban regions: case study of Delhi, India
Ranjana Ray Chaudhuri () and
Prateek Sharma ()
Additional contact information
Ranjana Ray Chaudhuri: TERI School of Advanced Studies
Prateek Sharma: TERI School of Advanced Studies
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, vol. 104, issue 3, No 17, 2307-2324
Abstract:
Abstract Classical approaches are used to develop rainfall intensity duration frequency curves for the estimation of design rainfall intensities corresponding to various return periods. The study modelled extreme rainfall intensities at different durations and compared the classical Gumbel and generalized extreme value (GEV) distributions in semi-arid urban region. The model and parameter uncertainties are translated to uncertainties in design storm estimates. A broader insight emerges that rainfall extremes in 1 h and 3 h are sensitive to the choice of frequency analysis (GEV in this case) and helps address anticipated intensification of extreme events for short duration at urban local scale. In comparison with Gumbel, GEV predicts higher extreme rainfall intensity corresponding to various return periods and duration (for 1-h duration the increase in extreme rainfall intensity is from 27 to 33% for return periods 10 years and higher, 3-h and 50-year return period—20%, 3-h and 100-year return period—20.6%, 24 h at similar return periods—10%). The Bayesian posterior distribution has a calibration effect on the GEV predictions and reduces the upper range of uncertainty in the GEV probability model prediction from a range of 16–31% to 10–28.4% for return period varying from 10 to 50 year for 1-h storms. In geographically similar areas these extreme intensities may be used to prepare for the rising flash flood risks.
Keywords: Extreme rainfall; Short duration; Uncertainty; Semi-arid; Bayesian; Delhi (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04273-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04273-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04273-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().