EconPapers    
Economics at your fingertips  
 

Multicriteria seismic hazard assessment in Puerto Vallarta metropolitan area, Mexico

Karen L. Flores, Christian R. Escudero () and Araceli Zamora-Camacho
Additional contact information
Karen L. Flores: Centro Universitario de la Costa, Universidad de Guadalajara
Christian R. Escudero: Centro Universitario de la Costa, Universidad de Guadalajara
Araceli Zamora-Camacho: Centro Universitario de la Costa, Universidad de Guadalajara

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 105, issue 1, No 14, 253-275

Abstract: Abstract Puerto Vallarta, a medium-size tourist city, located in the Pacific Coast of Mexico, in a similar way as many other coastal cities, combines human activity with the potential occurrence of natural hazard events. In this way, the use of new tools to evaluate the impact of such events seems imperative. Puerto Vallarta is located within a tectonic setting where the Rivera microplate subducts beneath the North American plate and is affected by seismic activity. We performed a seismic hazard assessment by implementing a GIS-based multicriteria evaluation model. The seismic microzonation map of Puerto Vallarta was performed using a criteria set of six thematic layers, i.e., peak ground acceleration values, soil, bedrock, slope gradient, curvature, and flow accumulation. We performed the integration of the criteria set by implementing the Analytical Hierarchy Process to assign a weight to each criterion according to its contribution to the seismic hazard, i.e., PGA (0.38), soil (0.25), rock (0.14), curvature (0.10), slope (0.08), and flow accumulation (0.07). The thematic maps were integrated using GIS according to the normalized weights. We classified the seismic hazard microzonation of Puerto Vallarta into five hazard levels, i.e., low (18%), low-medium (28%), medium (22%), medium–high (20%), and high (12%). The map shows heterogeneous distribution over the territory. However, the study area can be divided into three zones, i.e., the northern mountainous area, the Ameca River Valley, and the southern mountainous area. There is an overall increment of seismic hazard from south to north. However, the highest seismic hazard levels dominate the Rio Ameca Valley showing that it is more susceptible to deposits of soft sediment and thus can be affected in the occurrence of a major earthquake. The main objective of this paper was to implement a technique to quickly estimating seismic hazards levels using available data when there is no sophisticated geophysical and engineering analysis. Using the GIS-based multicriteria techniques in seismic hazard assessment allows to elucidated areas where factors influencing surface response to earthquakes interact and raise the soil amplification susceptibility.

Keywords: Seismic hazard; Multicriteria evaluation; Mexico (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04308-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04308-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04308-x

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04308-x