EconPapers    
Economics at your fingertips  
 

Integrated tsunami intensity scale based on maxima of tsunami amplitude and induced current

Laurie Boschetti and Mansour Ioualalen ()
Additional contact information
Laurie Boschetti: Université Côte d’Azur
Mansour Ioualalen: Université Côte d’Azur

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 105, issue 1, No 38, 815-839

Abstract: Abstract As with earthquakes, river floods, water waves, and wind intensities, a tsunami intensity has to be synthetic and comprehensive to be efficient. Tsunami impact is complex because the effects can be felt on the beach, on inundated areas and also at berths and anchors. Within the same local area, a tsunami may severely impact the population on the coast, while its effects may be negligible on marine bodies (boats). Most existing tsunami intensity scales are based either on water elevation or on induced currents. However, it is commonly admitted that both variables should be considered simultaneously. Several existing intensity scales were integrated and were made consistent with each other. An original intensity scale is then derived based on analysis of the interdependency between the maxima of tsunami amplitude and induced current: The dimension of the couple composed by two variables is analyzed, in particular through the derivation of a linear relationship using the long wave theory and the use of a fully nonlinear numerical experiment. Our intensity scale is particularly well adapted to numerical studies, for which the two variables are naturally derived within an entire computational grid. Once the tsunami intensity scale was set up, it was briefly applied to a particular case study: the impact of the Sumatra tsunami, dated December 26, 2004, on the coast of Sri Lanka. Indeed, the tsunami scales proposed herein represent an initial framework of study and can be further improved through new or revisited tsunami observations.

Keywords: Tsunami intensity; Tsunami modeling; Tsunami currents; Tsunami amplitude (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04338-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04338-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04338-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04338-5