EconPapers    
Economics at your fingertips  
 

Experimental study on permeability response in fractured rock to the effect of hydro-mechanical coupling, fracture geometry, and component content

Tong Zhang (), Xiang He, Yang Liu, Yixin Zhao, Ke Yang and Xiang Yu
Additional contact information
Tong Zhang: Anhui University of Science and Technology
Xiang He: China University of Mining and Technology
Yang Liu: Anhui University of Science and Technology
Yixin Zhao: China University of Mining and Technology
Ke Yang: Anhui University of Science and Technology
Xiang Yu: Anhui University of Science and Technology

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 105, issue 2, No 13, 1439-1451

Abstract: Abstract The conductivity of fractured rock mass caused by the hydro-mechanical behavior and attributes of the rock is critical for fluid seepage and solute diffusion. To study the evolution of fluid conductivity in fractured rock mass, by considering the hydro-mechanical coupling effect, fracture geometry, and component content, triaxial coupling and water–adsorption experiments were conducted. The results show that an increase in permeability is positively related to hydraulic pressure and negatively related to confining and axial stress. The conductivity of fractured rock mass is closely related to fracture morphology and component content. Compared with the dynamic hydraulic pressure dependence of permeability for dual-fracture sandstone, a dynamic confining stress dependence and history memory effect of permeability was observed in single-fracture sandstone, whereas the dynamic confining stress dependence of permeability for single-fracture sandy mudstone was observed, and dynamic hydraulic pressure dependence and history memory effect permeability for multi-fracture sandy mudstone and intact sandy mudstone was presented. Furthermore, the permeability of single-fracture sandy mudstone is two orders of magnitude more than that of multi-fracture and intact sandy mudstone. The integrated effect of hydro-mechanical coupling, fracture morphology, and component content on the conductivity is characterized by confining stress-dependent history memory indexes of 0.04e-17, 0.125e-19, and 0.2e-19 for single-fracture, multi-fracture, and intact sandy mudstone, respectively.

Keywords: Fluid conductivity; Fractured rock mass; History memory effect; Hydro-mechanical coupling effect (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04361-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04361-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04361-6

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04361-6