EconPapers    
Economics at your fingertips  
 

Flood risk mapping and crop-water loss modeling using water footprint analysis in agricultural watershed, northern Iran

Maziar Mohammadi (), Hamid Darabi, Fahimeh Mirchooli (), Alireza Bakhshaee () and Ali Torabi Haghighi ()
Additional contact information
Maziar Mohammadi: Tarbiat Modares University
Hamid Darabi: University of Oulu
Fahimeh Mirchooli: Tarbiat Modares University
Alireza Bakhshaee: University of Bologna
Ali Torabi Haghighi: University of Oulu

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 105, issue 2, No 37, 2007-2025

Abstract: Abstract Spatial information on flood risk and flood-related crop losses is important in flood mitigation and risk management in agricultural watersheds. In this study, loss of water bound in agricultural products following damage by flooding was calculated using water footprint and agricultural statistics, using the Talar watershed, northern Iran, as a case. The main conditioning factors on flood risk (flow accumulation, slope, land use, rainfall intensity, geology, and elevation) were rated and combined in GIS, and a flood risk map classified into five risk classes (very low to very high) was created. Using average crop yield per hectare, the amount of rice and wheat products under flood risk was calculated for the watershed. Finally, the spatial relationships between agricultural land uses (rice and wheat) and flood risk areas were evaluated using geographically weighted regression (GWR) in terms of local R2 at sub-watershed scale. The results showed that elevation was the most critical factor for flood risk. GWR results indicated that local R2 between rice farms and flood risk decreased gradually from north to south in the watershed, while no pattern was detected for wheat farms. Potential production of rice and wheat in very high flood risk zones was estimated to be 7972 and 18,860 tons, on an area of 822 ha and 7218 ha, respectively. Loss of these crops to flooding meant that approximately 34.04 and 12.10 million m3 water used for production of wheat and rice, respectively, were lost. These findings can help managers, policymakers, and watershed stakeholders achieve better crop management and flood damage reduction.

Keywords: Flood damages; Water footprint; Crop water loss; Flood risk management; GIS; Talar watershed (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04387-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04387-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04387-w

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04387-w