EconPapers    
Economics at your fingertips  
 

A fuzzy neural network bagging ensemble forecasting model for 72-h forecast of low-temperature chilling injury

Hong Lu, Yi Ou, Chuan Qin and Long Jin ()
Additional contact information
Hong Lu: Climate Center of Guangxi Zhuang Autonomous Region
Yi Ou: Climate Center of Guangxi Zhuang Autonomous Region
Chuan Qin: Climate Center of Guangxi Zhuang Autonomous Region
Long Jin: Climate Center of Guangxi Zhuang Autonomous Region

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 105, issue 2, No 44, 2147-2160

Abstract: Abstract On the basis of the daily temperature and precipitation data of Guangxi and the NCEP/NCAR reanalysis data and forecast field data, the paper aims to determine the significant nonlinearity and temporal variability of the forecast quantity series and the overfitting that can easily appear in the forecast modeling of a single fuzzy neural network model and many adjustable parameters that are difficult to determine objectively. Thus, an ensemble forecasting model of fuzzy neural network bagging for 72-h forecast of low-temperature chilling injury is developed. The forecast results of independent samples show that under the same forecast modeling sample (N = 299) and forecasting factor (M = 9), the fuzzy neural network bagging ensemble forecasting model obtains a mean absolute error of 13.91. By contrast, the mean absolute errors of the single fuzzy neural network forecasting model and the linear regression forecast are 15.82 and 18.13, respectively. The fuzzy neural network bagging ensemble forecast error is lower by 12.07 and 23.27%, respectively, compared with the latter two methods, showing a better forecasting skill. This improved performance is mainly due to the ensemble individuals of the fuzzy neural network bagging ensemble forecasting model with playback sampling. Different ensemble individuals are obtained. The ensemble enhances the generalization performance and forecast stability of the fuzzy neural network bagging ensemble forecasting model. Thus, this model has better applicability in forecasting nonlinear low-temperature chilling injury.

Keywords: Cold–wet index; Fuzzy neural network; Bagging ensemble forecast; Short-term forecast (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04393-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04393-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04393-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04393-y