EconPapers    
Economics at your fingertips  
 

Assessment of drought frequency, severity, and duration and its impacts on vegetation greenness and agriculture production in Mediterranean dryland: A case study in Tunisia

Nada Ben Mhenni (), Masato Shinoda and Banzragch Nandintsetseg
Additional contact information
Nada Ben Mhenni: Nagoya University
Masato Shinoda: Nagoya University
Banzragch Nandintsetseg: Nagoya University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 105, issue 3, No 19, 2755-2776

Abstract: Abstract Drought is among the highest-impact natural hazards affecting drylands around the world in a warming climate. The Mediterranean region, including Tunisia, is projected to experience the most predominant drying trends worldwide. However, a detailed regional scale study of drought for Tunisia has been limited, hampering an assessment of drought impact on the ecosystem and society. This study explored drought characteristics and its effect on vegetation greenness and agricultural productivity in three vegetation zones of Tunisia during 1982–2011, taking advantage of both meteorological and soil moisture drought indices and identifying the most appropriate index for each zone. The results revealed that meteorological droughts were short and frequent, triggering soil moisture droughts that were long-lasting and intense. The standardized precipitation index was identified as the best indicator of vegetation and agricultural droughts in the Northern forest, while the Palmer Drought Severity Index was best in the Central steppe and Southern desert (no crop data in the Southern desert). The lag-correlation analysis revealed that the response of both vegetation greenness and wheat productivity to droughts was more pronounced and had a longer significant lag in the Central steppe than in the other regions. These results suggest that arable land species (Central steppe and Southern desert), characterized by shallow roots, have a rapid response to rainfall variability when compared with forest species (Northern forest), which have deep roots allowing them an adequate supply of moisture. The region-specific indices identified here will provide a useful measure for drought monitoring and mitigation in Tunisia.

Keywords: Meteorological drought; Soil moisture drought; Vegetation drought; Agricultural drought; Mediterranean dryland; Tunisia (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04422-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04422-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04422-w

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04422-w