Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB
Mahya Norallahi and
Hesam Seyed Kaboli ()
Additional contact information
Mahya Norallahi: Jundi-Shapur University of Technology
Hesam Seyed Kaboli: Jundi-Shapur University of Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 106, issue 1, No 6, 119-137
Abstract:
Abstract Rapid urban development, increasing impermeable surfaces, poor drainage system and changes in extreme precipitations are the most important factors that nowadays lead to increased urban flooding and it has become an urban problem. Urban flood mapping and its use in making an urban development plan can reduce flood damages and losses. Constantly producing urban flood hazard maps using models that rely on the availability of detailed hydraulic-hydrological data is a major challenge especially in developing countries. In this study, urban flood hazard map was produced with limited data using three machine learning models: Genetic Algorithm Rule-Set Production, Maximum Entropy (MaxEnt), Random Forest (RF) and Naïve Bayes for Kermanshah city, Iran. The flood hazard predicting factors used in modeling were: slope, land use, precipitation, distance to river, distance to channel, curve number (CN) and elevation. Flood inventory map was produced based on available reports and field surveys, that 117 flooded points and 163 non-flooded points were identified. Models performance was evaluated based on area under the receiver-operator characteristic curve (AUC-ROC), Kappa statistic and hits and miss analysis. The results show that RF model (AUC-ROC = 99.5%, Kappa = 98%, Accuracy = 90%, Success ratio = 99%, Threat score = 90% and Heidke skill score = 98%) performed better than other models. The results also showed that distance to canal, land use and CN have shown more contribution among others for modeling the flood and precipitation had the least effect among other factors. The findings show that machine learning methods can be a good alternative to distributed models to predict urban flood-prone areas where there are lack of detailed hydraulic and hydrological data.
Keywords: Urban flood; Flood susceptibility; Machine learning; GIS; Iran (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04453-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:106:y:2021:i:1:d:10.1007_s11069-020-04453-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04453-3
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().