EconPapers    
Economics at your fingertips  
 

The meteorological tsunami of 1 November 2010 in the southern Strait of Georgia: a case study

Alexander B. Rabinovich, Jadranka Šepić () and Richard E. Thomson
Additional contact information
Alexander B. Rabinovich: Fisheries and Oceans Canada
Jadranka Šepić: University of Split
Richard E. Thomson: Fisheries and Oceans Canada

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 106, issue 2, No 19, 1503-1544

Abstract: Abstract Tsunami-like sea level oscillations recently recorded by tide gauges located along the coasts of British Columbia (Canada) and Washington State (USA) have been identified as meteorological tsunamis. Globally, such events can create hazardous conditions in coastal areas, including the possible loss of life, and need to be taken into account in any assessment of risk to nearshore infrastructure. On 1 November 2010, a significant meteotsunami occurred in the southern Strait of Georgia, British Columbia. To examine this event, we have used all available sea level and air pressure data, including 1-min records from five Canadian Hydrographic Service and five USA National Oceanic and Atmospheric Administration tide gauges, as well as high-resolution time series from two Ocean Network Canada VENUS bottom pressure recorders and from 132 air pressure sensors within the Victoria School-Based Weather Station Network of southern British Columbia. The oceanic responses to four well-defined atmospheric disturbances (labelled D1–D4) were selected for analysis. Disturbance D3, which propagated toward ~ 100° True (eastward) at a speed of ~ 20 m/s, appears to have been responsible for generating the meteotsunami observed in the southern Strait of Georgia, while disturbance D4 that moved toward ~ 55° True at a speed of 24 m/s appears to have produced the meteotsunami observed in Juan de Fuca Strait that separates Vancouver Island from Washington State. We used the physical parameters derived for the four disturbances to force numerical simulations of the events and compared the results to observations from selected tide gauge sites. The numerical experiments revealed strongly individual sea level responses at each site to changing air pressure disturbance speed, direction and intensity, such that each location has its own set of “site-specific” air pressure characteristics that produce the strongest sea level response. Differences in the local topography and coastline geometry appear to be responsible for the different responses among sites.

Keywords: Meteorological tsunamis; Seiches; Atmospheric pressure; Victoria School-Based Weather Station Network; Vancouver Island; Strait of Georgia; Juan de Fuca Strait; Numerical modelling; Time series analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04203-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:106:y:2021:i:2:d:10.1007_s11069-020-04203-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-020-04203-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:106:y:2021:i:2:d:10.1007_s11069-020-04203-5