Real-time pressure disturbance monitoring system in the Yellow Sea: pilot test during the period of March to April 2018
Myung-Seok Kim,
Hyunmin Eom,
Sung Hyup You and
Seung-Buhm Woo ()
Additional contact information
Myung-Seok Kim: Inha University
Hyunmin Eom: Korea Meteorological Administration
Sung Hyup You: Korea Meteorological Administration
Seung-Buhm Woo: Inha University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 106, issue 2, No 28, 1703-1728
Abstract:
Abstract Until now, the meteotsunamis reported in the Yellow Sea have been caused by sudden pressure disturbances; however, no suitable monitoring system has been established for these disturbances. With the maximum available pressure data based on 89 automatic weather stations (AWS), a real-time pressure disturbance monitoring system was developed for meteotsunami disaster prevention. When a pressure disturbance calculated from a rate of pressure change exceeds 1.2 hPa/10 min at a certain AWS, the monitoring system detects the occurrence of a pressure jump that can generate meteotsunamis in the Yellow Sea. The real-time monitoring system is operated by sending a short message service to hazard areas where destructive meteotsunamis are expected to occur by monitoring the intensity of the pressure disturbance and its propagation direction. During the pilot test from March to April 2018, the monitoring system detected four pressure jump events in total, two of which caused meteotsunamis. On the two meteotsunami event dates, the monitored pressure disturbances exceeded the intensity criteria for a common pressure jump and showed similar propagation patterns with the meteotsunamis. In particular, both meteotsunami events occurred only when the pressure jump, spatially characterized as a linear or bow type, propagated at least 12 m/s. Despite the limited number of events during the pilot test, this study provides an example of a meteotsunami-monitoring system and implications for additional pressure jump conditions favorable to meteotsunami occurrence.
Keywords: Meteotsunami; Pressure disturbance; Pressure jump; Real-time monitoring system; Yellow sea (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04245-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:106:y:2021:i:2:d:10.1007_s11069-020-04245-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04245-9
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().