Evaluation of parametric wind models for more accurate modeling of storm surge: a case study of Hurricane Michael
Linoj Vijayan,
Wenrui Huang (),
Kai Yin,
Eren Ozguven,
Simone Burns and
Mahyar Ghorbanzadeh
Additional contact information
Linoj Vijayan: Florida A&M University-Florida State University
Wenrui Huang: Florida A&M University-Florida State University
Kai Yin: Florida A&M University-Florida State University
Eren Ozguven: Florida A&M University-Florida State University
Simone Burns: Florida A&M University-Florida State University
Mahyar Ghorbanzadeh: Florida A&M University-Florida State University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 106, issue 3, No 13, 2003-2024
Abstract:
Abstract Storm surge induced by hurricane is a major threat to the Gulf Coasts of the United States. A numerical modeling study was conducted to simulate the storm surge during Hurricane Michael, a category 5 hurricane that landed on the Florida Panhandle in 2018. A high-resolution model mesh was used in the ADCIRC hydrodynamic model to simulate storm surge and tides during the hurricane. Two parametric wind models, Holland 1980 model and Holland 2010 model, have been evaluated for their effects on the accuracy of storm surge modeling by comparing simulated and observed maximum water levels along the coast. The wind model parameters are determined by observed hurricane wind and pressure data. Results indicate that both Holland 1980 and Holland 2010 wind models produce reasonable accuracy in predicting maximum water level in Mexico Beach, with errors between 1 and 3.7%. Comparing to the observed peak water level of 4.74 m in Mexico Beach, Holland 1980 wind model with radius of 64-knot wind speed for parameter estimation results in the lowest error of 1%. For a given wind model, the wind profiles are also affected by the wind data used for parameter estimation. Away from hurricane eye wall, using radius of 64-knot wind speed for parameter estimation generally produces weaker wind than those using radius of 34-knot wind speed for parameter estimation. Comparing model simulated storm tides with 17 water marks observed along the coast, Holland 2010 wind model using radius of 34-knot wind speed for parameter estimation leads to the minimum mean absolute error. The results will provide a good reference for researchers to improve storm surge modeling. The validated model can be used to support coastal hazard mitigation planning.
Keywords: Storm surge modeling; ADCIRC; Parametric wind model; Hurricane Michael (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04525-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04525-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04525-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().