EconPapers    
Economics at your fingertips  
 

Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy

Fabio Cian (), Carlo Giupponi () and Mattia Marconcini ()
Additional contact information
Fabio Cian: Ca’ Foscari University Venice
Mattia Marconcini: German Aerospace Center–DLR

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 106, issue 3, No 19, 2163-2184

Abstract: Abstract Climate sciences foresee a future where extreme weather events could happen with increased frequency and strength, which would in turn increase risks of floods (i.e. the main source of losses in the world). The Mediterranean basin is considered a hot spot in terms of climate vulnerability and risk. The expected impacts of those events are exacerbated by land-use change and, in particular, by urban growth which increases soil sealing and, hence, water runoff. The ultimate consequence would be an increase of fatalities and injuries, but also of economic losses in urban areas, commercial and productive sites, infrastructures and agriculture. Flood damages have different magnitudes depending on the economic value of the exposed assets and on level of physical contact with the hazard. This work aims at proposing a methodology, easily customizable by experts’ elicitation, able to quantify and map the social component of vulnerability through the integration of earth observation (EO) and census data with the aim of allowing for a multi-temporal spatial assessment. Firstly, data on employment, properties and education are used for assessing the adaptive capacity of the society to increase resilience to adverse events, whereas, secondly, coping capacity, i.e. the capacities to deal with events during their manifestation, is mapped by aggregating demographic and socio-economic data, urban growth analysis and memory on past events. Thirdly, the physical dimension of exposed assets (susceptibility) is assessed by combining building properties acquired by census data and land-surface characteristics derived from EO data. Finally, the three components (i.e. adaptive and coping capacity and susceptibility) are aggregated for calculating the dynamic flood vulnerability index (FVI). The approach has been applied to Northeast Italy, a region frequently hit by floods, which has experienced a significant urban and economic development in the past decades, thus making the dynamic study of FVI particularly relevant. The analysis has been carried out from 1991 to 2016 at a 5-year steps, showing how the integration of different data sources allows to produce a dynamic assessment of vulnerability, which can be very relevant for planning in support of climate change adaptation and disaster risk reduction.

Keywords: Flood; Vulnerability index; Earth observation; Census data; Memory effect; Multi-criteria analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04535-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04535-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-04535-w

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04535-w