Seismic attenuation model for data gap regions using recorded and simulated ground motions
M. C. Raghucharan (),
Surendra Nadh Somala (),
O. Erteleva () and
Eugeny Rogozhi ()
Additional contact information
M. C. Raghucharan: Indian Institute of Technology Hyderabad
Surendra Nadh Somala: Indian Institute of Technology Hyderabad
O. Erteleva: Russian Academy of Sciences
Eugeny Rogozhi: Russian Academy of Sciences
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 107, issue 1, No 19, 423-446
Abstract:
Abstract In this study, seismic attenuation model is derived using recorded and simulated ground motions covering the data gap region of the Indo-Gangetic Plains (IGP), employing artificial neural networks (ANN) methodology. Four independent variables moment magnitude (Mw), focal depth, epicentral distance (Repi), and average shear wave velocity up to 30 m depth (Vs30) are selected to predict peak ground acceleration (PGA) and pseudo-spectral acceleration (PSA) (5% damping) between periods 0.01 to 4 s (twenty-five periods in total), utilizing 926 recordings (PESMOS, CIGN and synthetic database). A feed-forward ANN with Levenberg–Marquardt training algorithm is employed for training the network of input and output dataset. The optimal network architecture obtained in this study consists of 4–9–26 input, hidden and target nodes, respectively. In spite of the absence of presumed functional dependencies in ANN methodology, our model captured a number of sound physical features of earthquake ground motion: magnitude scaling, attenuation with distance and radiation damping. Further, the performance of the model is measured by the standard deviation of the error, σ(ε), and compared with the four widely used conventional GMPEs applicable for IGP region of India. The standard deviations for our model varied between 0.208 and 0.263 which is less than the classical GMPEs at all twenty-six periods of PSA. Finally, the ANN model performance is compared with recorded ground motions at four stations and conventional GMPEs, and the results affirm that this model is competent to predict the response spectrum with good accuracy for IGP region.
Keywords: Seismic attenuation; GMPE; Artificial neural networks; Indo-Gangetic Plains; PESMOS; CIGN (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04589-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04589-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04589-w
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().