EconPapers    
Economics at your fingertips  
 

Automated landslide detection model to delineate the extent of existing landslides

Yashar Alimohammadlou, Burak F. Tanyu (), Aiyoub Abbaspour and Paul L. Delamater
Additional contact information
Yashar Alimohammadlou: George Mason University
Burak F. Tanyu: George Mason University
Aiyoub Abbaspour: George Mason University
Paul L. Delamater: University of North Carolina

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 107, issue 2, No 30, 1639-1656

Abstract: Abstract Landslides are one of the most common natural hazards and cause major socioeconomic impacts worldwide. Identifying the locations of the active or inactive landslides before development may play a major role in identifying areas of high risk. Traditional methods for inventorying landslides involve field surveying and interpretation of photogrammetric data. The advent of recent remote sensing technologies has expedited this process, and as a result, several computer-based algorithms used to identify the locations of past landslides have been proposed. Computer-based analyses provide significant advantages over traditional methods; however, a majority of these computer-based analyses require the user to define the properties of the landslide prior to the search and require supervision and quality assurance. The purpose of this study is to present a simple, new methodology that can be implemented with readily available tools and datasets without the need to supervise the analysis after the parameters regarding landslide morphology are defined for that region. This methodology is referred to as automated landslide detection model (ALDM). Three areas with LiDAR bare earth digital elevation models (DEMs) have been used to test the ALDM, each consisting of a varying range of mapped landslide features. The ALDM results were compared against data obtained from the Pennsylvania Department of Conservation and Natural Resources and landslides that were determined visually from the hillshade map of the study area. The results demonstrate that the ALDM method was able to accurately capture both the landslides and non-landslides in all of the areas evaluated with accuracies of 70% and 92%, respectively. Additionally, the study showed that the proposed ALDM method could be implemented in different regions where landslides of different shapes and sizes could be detected.

Keywords: Landslide detection; Inventory analysis; Roughness analysis; Image processing; LiDAR (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04650-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04650-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-04650-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04650-8