Estimating impacts of recurring flooding on roadway networks: a Norfolk, Virginia case study
Shraddha Praharaj (),
T. Donna Chen (),
Faria T. Zahura (),
Madhur Behl () and
Jonathan L. Goodall ()
Additional contact information
Shraddha Praharaj: University of Virginia
T. Donna Chen: University of Virginia
Faria T. Zahura: University of Virginia
Madhur Behl: University of Virginia
Jonathan L. Goodall: University of Virginia
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 107, issue 3, No 15, 2363-2387
Abstract:
Abstract Climate change and sea level rise have increased the frequency and severity of flooding events in coastal communities. This study quantifies transportation impacts of recurring flooding using crowdsourced traffic and flood incident data. Agency-provided continuous count station traffic volume data at 12 locations is supplemented by crowd-sourced traffic data from location-based apps in Norfolk, Virginia, to assess the impacts of recurrent flooding on traffic flow. A random forest data predictive model utilizing roadway features, traffic flow characteristics, and hydrological data as inputs scales the spatial extent of traffic volume data from 12 to 7736 roadway segments. Modeling results suggest that between January 2017 and August 2018, City of Norfolk reported flood events reduced 24 h citywide vehicle-hours of travel (VHT) by 3%, on average. To examine the temporal and spatial variation of impacts, crowdsourced flood incident reports collected by navigation app Waze between August 2017 and August 2018 were also analyzed. Modeling results at the local scale show that on weekday afternoon and evening periods, flood-impacted areas experience a statistically significant 7% reduction in VHT and 12% reduction in vehicle-miles traveled, on average. These impacts vary across roadway types, with substantial decline in traffic volumes on freeways, while principal arterials experience increased traffic volumes during flood periods. Results suggest that analyzing recurring flooding at the local scale is more prudent as the impact is temporally and spatially heterogeneous. Furthermore, countermeasures to mitigate impacts require a dynamic strategy that can adapt to conditions across various time periods and at specific locations.
Keywords: Recurring flooding; Crowd-sourced data; Data predictive model; Impact analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-020-04427-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:107:y:2021:i:3:d:10.1007_s11069-020-04427-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-020-04427-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().