EconPapers    
Economics at your fingertips  
 

Social media information sharing for natural disaster response

Zhijie Sasha Dong, Lingyu Meng (), Lauren Christenson and Lawrence Fulton
Additional contact information
Zhijie Sasha Dong: Texas State University
Lingyu Meng: Texas State University
Lauren Christenson: Texas State University
Lawrence Fulton: Texas State University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 107, issue 3, No 3, 2077-2104

Abstract: Abstract Social media has become an essential channel for posting disaster-related information, which provides governments and relief agencies real-time data for better disaster management. However, research in this field has not received sufficient attention, and extracting useful information is still challenging. This paper aims to improve disaster relief efficiency via mining and analyzing social media data like public attitudes toward disaster response and public demands for targeted relief supplies during different types of disasters. We focus on different natural disasters based on properties such as types, durations, and damages, which contains a total of 41,993 tweets. In this paper, public perception is assessed qualitatively by manually classified tweets, which contain information like the demand for targeted relief supplies, satisfactions of disaster response, and public fear. Public attitudes to natural disasters are studied via a quantitative analysis using eight machine learning models. To better provide decision-makers with the appropriate model, the comparison of machine learning models based on computational time and prediction accuracy is conducted. The change of public opinion during different natural disasters and the evolution of peoples’ behavior of using social media for disaster relief in the face of the identical type of natural disasters as Twitter continues to evolve are studied. The results in this paper demonstrate the feasibility and validation of the proposed research approach and provide relief agencies with insights into better disaster management.

Keywords: Sentiment analysis; Disaster response; Big data analytics; Machine learning; Social media; Twitter (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04528-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:107:y:2021:i:3:d:10.1007_s11069-021-04528-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-04528-9

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:107:y:2021:i:3:d:10.1007_s11069-021-04528-9