Statistical-based shallow landslide susceptibility assessment for a tropical environment: a case study in the southeastern Brazilian coast
Helen Cristina Dias (),
Marcelo Fischer Gramani,
Carlos Henrique Grohmann,
Carlos Bateira and
Bianca Carvalho Vieira
Additional contact information
Helen Cristina Dias: University of São Paulo
Marcelo Fischer Gramani: IPT - Institute of Technical Research of the State of São Paulo
Carlos Henrique Grohmann: University of São Paulo
Carlos Bateira: University of Lisbon/FLUP, University of Porto
Bianca Carvalho Vieira: University of São Paulo
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 108, issue 1, No 10, 205-223
Abstract:
Abstract Statistical susceptibility assessment is a common approach applied worldwide for shallow landslide studies. Identification of morphological and geological conditions is essential and still incipient to evaluate the susceptibility of landslide events in the Brazilian territory. This study aimed to develop and compare shallow landslide susceptibility scenarios based on a bivariate statistical evaluation of geological (lithology and structures) and morphological (curvature, elevation, slope, and aspect) factors in Caraguatatuba, northern coast of São Paulo State in Brazil. A compilation of geological factors from published maps was made, and morphological maps were created based on Shuttle Radar Topography Mission (30 m). A bivariate statistical application by the informative value method was used to create four susceptibility scenarios, and the validation was achieved using the area under the curve (AUC). The results indicated that lithology was the more relevant conditioning factor, followed by elevation and slope. The methodology used to determine the susceptibility was efficient (AUC values between 0.809 and 0.841). The susceptibility scenario comparison identified that conditioning factors with the highest informational value generated the most accurate mapping. This indicates that using several conditioning factors does not necessarily generate a better map. This study contributes to shallow landslides research from a methodological perspective, as it is the first analysis of its kind in Serra do Mar Paulista, which are continuously affected by mass movements. Open-source data were chosen to be used, focusing on methodological applicability in other regions of the country, since resources for landslide studies in Brazil are low.
Keywords: Informative value; Mass movement; Serra do Mar; Statistical index method; AUC (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04676-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:108:y:2021:i:1:d:10.1007_s11069-021-04676-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-021-04676-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().