EconPapers    
Economics at your fingertips  
 

Mass evacuation microsimulation modeling considering traffic disruptions

Jahedul Alam Md () and Muhammad Ahsanul Habib ()
Additional contact information
Jahedul Alam Md: Dalhousie University
Muhammad Ahsanul Habib: Dalhousie University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2021, vol. 108, issue 1, No 15, 323-346

Abstract: Abstract This study presents a framework of traffic evacuation microsimulation modeling that accounts for uncertain network disruptions endogenous to traffic operations. While evacuation modeling considers external stresses such as flooding-related network disruptions, the risks inherent to the transport operations, particularly vehicle collisions may also cause disruptions to evacuation traffic flows. This study adopts a combined Bayes theory and Monte Carlo simulation approach to identify collision hotspots and their occurrence over different times of an evacuation day. A traffic evacuation microsimulation model is developed which explicitly incorporates vehicle collision-related disruptions at the hotspots identified by this probabilistic model. The proposed probabilistic approach identifies 128 candidate collision locations within the study area. The probabilities of candidate locations to anticipate a vehicle collision range between 0.21 and 7.0%. Based on the probabilities, the Monte Carlo simulation approach identifies five hotspots for traffic microsimulation modeling of vehicle collisions during the evacuation. The results from the traffic simulation reveal that due to concurrent collision occurrence, evacuation times vary within 23–31 h depending on the time required to remove traffic disruptions from the network. On the other hand, the concurrent collision occurrence at the hotspots increases the complete evacuation time by almost 11 h if the disruption is not removed from the network, an increase of 50%, compared to an evacuation scenario without disruptions. The analysis of simulated queue length reveals that the hotspots’ traffic queues range from 0.28 to 2.06 km depending on their locations in the study area. The study asserts that an evacuation model without the consideration of the network disruptions due to endogenous risks may underestimate the traffic impacts and network clearance time for an evacuation. These results will provide emergency professionals with insights into managing emergency traffic operation subjected to uncertainties.

Keywords: Evacuation; Vehicle collision; Bayes theory; Monte Carlo simulation; Endogenous risks; Clearance time; Traffic simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-021-04684-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:108:y:2021:i:1:d:10.1007_s11069-021-04684-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-021-04684-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:108:y:2021:i:1:d:10.1007_s11069-021-04684-y